Introduction to Number Systems
ch1-introduction
Rational Numbers
ch1-rational-numbers
Exercise 1.1 - Detailed Solutions
ch1-exercise-1-1
Irrational Numbers
ch1-irrational-numbers
Exercise 1.2 - Detailed Solutions
ch1-exercise-1-2
Real Numbers & Decimal Expansions
ch1-real-decimals
Exercise 1.3 - Detailed Solutions
ch1-exercise-1-3
Operations on Real Numbers
ch1-operations
Rationalizing the Denominator
ch1-rationalization
Exercise 1.4 & 1.5 - Solutions
ch1-exercise-1-4-5
Laws of Exponents for Real Numbers
ch1-laws-exponents
Chapter 1 Summary
ch1-summary
What is a Polynomial?
ch2-introduction
Types of Polynomials
ch2-types
Zeroes of a Polynomial
ch2-zeroes
Exercise 2.1 - Detailed Solutions
ch2-exercise-2-1
Remainder Theorem
ch2-remainder-theorem
Factor Theorem
ch2-factor-theorem
Algebraic Identities
ch2-identities
Exercise 2.4 - Identity Applications
ch2-exercise-2-4
Chapter 2 Summary
ch2-summary
Step 1: Recognize the pattern 103=100+3 107=100+7
Step 2: Use Identity 4: (x+a)(x+b)=x2+(a+b)x+ab
=(100)2+(3+7)(100)+(3)(7) =10000+1000+21 =11021 ✓
95=100−5 96=100−4
Using (x−a)(x−b)=x2−(a+b)x+ab: =10000−900+20=9120 ✓
Step 1: Write as (100−1)3
Step 2: Use Identity 7: (x−y)3=x3−3x2y+3xy2−y3
=(100)3−3(100)2(1)+3(100)(1)2−(1)3 =1000000−30000+300−1 =970299 ✓
Step 1: Check if sum = 0 −12+7+5=0 ✓
Step 2: Apply special case If x+y+z=0, then x3+y3+z3=3xyz
=3(−12)(7)(5) =3(−420) =−1260 ✓
Step 1: Check: 28−15−13=0 ✓
Step 2: Apply formula =3(28)(−15)(−13) =3×28×195 =16380 ✓
Interactive Visualization