Introduction to Number Systems
ch1-introduction
Rational Numbers
ch1-rational-numbers
Exercise 1.1 - Detailed Solutions
ch1-exercise-1-1
Irrational Numbers
ch1-irrational-numbers
Exercise 1.2 - Detailed Solutions
ch1-exercise-1-2
Real Numbers & Decimal Expansions
ch1-real-decimals
Exercise 1.3 - Detailed Solutions
ch1-exercise-1-3
Operations on Real Numbers
ch1-operations
Rationalizing the Denominator
ch1-rationalization
Exercise 1.4 & 1.5 - Solutions
ch1-exercise-1-4-5
Laws of Exponents for Real Numbers
ch1-laws-exponents
Chapter 1 Summary
ch1-summary
What is a Polynomial?
ch2-introduction
Types of Polynomials
ch2-types
Zeroes of a Polynomial
ch2-zeroes
Exercise 2.1 - Detailed Solutions
ch2-exercise-2-1
Remainder Theorem
ch2-remainder-theorem
Factor Theorem
ch2-factor-theorem
Algebraic Identities
ch2-identities
Exercise 2.4 - Identity Applications
ch2-exercise-2-4
Chapter 2 Summary
ch2-summary
(i) 2 - √5
(ii) (3 + √23) - √23
(iii) 7727
(iv) 21
(v) 2π
(i) 71 =71×77=77
(ii) 7−61 =(7)2−(6)27+6=17+6=7+6
(i) 641/2 = √64 = 8 ✓
(ii) 321/5 = ⁵√32 = ⁵√(2⁵) = 2 ✓
(iii) 1251/3 = ³√125 = ³√(5³) = 5 ✓
(i) 93/2 Method: am/n=(na)m = (9)3=33 = 27 ✓
(ii) 322/5 = (532)2=22 = 4 ✓
(iii) 163/4 = (416)3=23 = 8 ✓
(iv) 125−1/3 = 1251/31=51 ✓
(i) 22/3×21/5 Using am×an=am+n: = 22/3+1/5=210/15+3/15=213/15 ✓
(iv) 71/2×81/2 Using am×bm=(ab)m: = (7×8)1/2=561/2=56=214 ✓